Minggu, 01 Februari 2015

KALOR

Edit Posted by with No comments
Panasbahang, atau kalor adalah energi yang berpindah akibat perbedaan suhu. Satuan SI untuk panas adalah joule.
Panas bergerak dari daerah bersuhu tinggi ke daerah bersuhu rendah. Setiap benda memiliki energi dalam yang berhubungan dengan gerak acak dari atom-atom atau molekul penyusunnya.
Energi dalam ini berbanding lurus terhadap suhu benda. Ketika dua benda dengan suhu berbeda bergandengan, mereka akan bertukar energi internal sampai suhu kedua benda tersebut seimbang. Jumlah energi yang disalurkan adalah jumlah energi yang tertukar. Kesalahan umum untuk menyamakan panas dan energi internal. Perbedaanya adalah panas dihubungkan dengan pertukaran energi internal dan kerja yang dilakukan oleh sistem. Mengerti perbedaan ini dibutuhkan untuk mengerti hukum pertama termodinamika.
Radiasi inframerah sering dihubungkan dengan panas, karena objek dalam suhu ruangan atau di atasnya akan memancarkan radiasikebanyakan terkonstentrasi dalam "band" inframerah-tengah. 
NOTASI
Ketika suatu benda melepas panas ke sekitarnya, Q < 0. Ketika benda menyerap panas dari sekitarnya, Q > 0. Jumlah panas, kecepatan penyaluran panas, dan flux panas semua dinotasikan dengan perbedaan permutasi huruf Q. Mereka biasanya diganti dalam konteks yang berbeda.
Jumlah panas dinotasikan sebagai Q, dan diukur dalam joule dalam satuan SI.
\frac{}{} Q = m c \Delta t
di mana
\frac{}{}Q  adalah banyaknya kalor (jumlah panas) dalam joule
\frac{}{}m  adalah massa benda dalam kg
\frac{}{}c  adalah kalor jenis dalam joule/kg °C, dan
\frac{}{} \Delta t adalah besarnya perubahan suhu dalam °C.
Kecepatan penyaluran panas, atau penyaluran panas per unit, ditandai
\dot{Q} = {dQ\over dt}
untuk menandakan pergantian per satuan waktu. Dalam Unicode, adalah , meskipun ada kemungkinan tidak dapat ditampilkan secara benar di seluruh browser. Diukur dalam unitwatt.
Flux panas didefinisikan sebagai jumlah panas per satuan waktu per luas area, dan dinotasikan q, dan diukur dalam watt per meter2. Juga biasanya dinotasikan sebagai Q″ atau q″ atau
\dot{Q}''.

PERUBAHAN SUHU
Jumlah energi panas, \Delta Q, dibutuhkan untuk menggantu suhu suatu material dari suhu awal, T0, ke suhu akhir, Tf tergantung dari kapasitas panas bahan tersebut menurut hubungan:
\Delta Q = \int_{T_0}^{T_f}C_p\,dT.
Kapasitas panas tergantung dari jumlah material yang bertukar panas dan properti bahan tersebut. Kapasitas panas dapat dipecah menjadi beberapa cara berbeda. Pertama-tama, dia dapat dipresentasikan sebagai perkalian dari masa dan kapasitas panas spesifik (lebih umum disebut panas spesifik:
C_p = mc_s
atau jumlah mol dan kapasitas panas molar:
C_p = nc_n.
Molar dan kapasitas spesifik panas bergantung dari properti fisik dari zat yang dipanasi, tidak tergantung dari properti spesifik sampel. Definisi di atas tentang kapasitas panas hanya bekerja untuk benda padat dan cair, tetapi untuk gas mereka tak bekerja pada umumnya.
Kapasitas panas molar dapat "dimodifikasi" bila perubahan suhu terjadi pada volume tetap atau tekanan tetap. Bila tidak, menggunakan hukum pertama termodinamikadikombinasikan dengan persamaan yang menghubungkan energi internal gas tersebut terhadap suhunya.

RADIASI

Edit Posted by with No comments
APASIH RADIASI ELEKTROMAGNETIK ??
YUKK DIBACAA .... ^^

Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti "bawah merah" (dari bahasa Latin infra, "bawah"), merah merupakanwarna dari cahaya tampak dengan gelombang terpanjang. Radiasi inframerah memiliki jangkauan tiga "order" dan memiliki panjang gelombang antara 700  nm dan 1 mm. Inframerah ditemukan secara tidak sengaja oleh Sir William Herschell, astronom kerajaan Inggris ketika ia sedang mengadakan penelitian mencari bahan penyaring optis yang akan digunakan untuk mengurangi kecerahan gambar matahari pada teleskop tata surya.

KARAKTERISITIK
  • tidak dapat dilihat oleh manusia
  • tidak dapat menembus materi yang tidak tembus pandang
  • dapat ditimbulkan oleh komponen yang menghasilkan panas
  • Panjang gelombang pada inframerah memiliki hubungan yang berlawanan atau berbanding terbalik dengan suhu. Ketika suhu mengalami kenaikan, maka panjang gelombang mengalami penurunan.

JENIS-JENIS INFRAMERAH BERDASARKAN PANJANG GELOMBANG

  • Inframerah jarak dekat dengan panjang gelombang 0.75 – 1.5 µm
  • Inframerah jarak menengah dengan panjang gelombang 1.50 – 10 µm
  • Inframerah jarak jauh dengan panjang gelombang 10 – 100 µm

KEGUNAAN INFRAMRAH DALAM LINGKUNGAN
KESEHATAN
  • Mengaktifkan molekul air dalam tubuh. Hal ini disebabkan karena inframerah mempunyai getaran yang sama dengan molekul air. Sehingga, ketika molekul tersebut pecah maka akan terbentuk molekul tunggal yang dapat meningkatkan cairan tubuh.
  • Meningkatkan sirkulasi mikro. Bergetarnya molekul air dan pengaruh inframerah akan menghasilkan panas yang menyebabkan pembuluh kapiler membesar, dan meningkatkansuhu kulit, memperbaiki sirkulasi darah dan mengurani tekanan jantung.
  • Meningkatkan metabolisme tubuh. jika sirkulasi mikro dalam tubuh meningkat, racun dapat dibuang dari tubuh kita melalui metabolisme. Hal ini dapat mengurangi beban liverdan ginjal.
  • Mengembangkan Ph dalam tubuh. Sinar inframerah dapat membersihkan darah, memperbaiki tekstur kulit dan mencegah rematik karena asam urat yang tinggi.
  • Inframerah jarak jauh banyak digunakan pada alat-alat kesehatan. Pancaran panas yang berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagaiinformasi kondisi kesehatan organ tersebut. Hal ini sangat bermanfaat bagi dokter dalam diagnosis kondisi pasien sehingga ia dapat membuat keputusan tindakan yang sesuai dengan kondisi pasien tersebut. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar. Contoh penggunaan inframerah yang menjadi trend saat ini adalah adanya gelang kesehatan. Dengan memanfaatkan inframerah jarak jauh, gelang tersebut dapat berperang dalam pembersihan dalam tubuh dan pembasmian kuman atau bakteri.
KOMUNIKASI
  • Adanya sistem sensor inframerah. Sistem sensor ini pada dasarnya menggunakan inframerah sebagai media komunikasi yang menghubungkan antara dua perangkat. Penerapan sistem sensor infra ini sangat bermanfaat sebagai pengendali jarak jauh, alarm keamanan, dan otomatisasi pada sistem. Adapun pemancar pada sistem ini terdiri atas sebuah LED inframerah yang telah dilengkapi dengan rangkaian yang mampu membangkitkan data untuk dikirimkan melalui sinar inframerah, sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau modulasi infra merah yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
  • Adanya kamera tembus pandang yang memanfaatkan sinar inframerah. Sinar inframerah memang tidak dapat ditangkap oleh mata telanjang manusia, namun sinar inframerah tersebut dapat ditangkap oleh kamera digital atau video handycam. Dengan adanya suatu teknologi yang berupa filter iR PF yang berfungi sebagai penerus cahaya infra merah, maka kemampuan kamera atau video tersebut menjadi meningkat. Teknologi ini juga telah diaplikasikan ke kamera handphone
  • Untuk pencitraan pandangan seperti nightscoop
  • Inframerah digunakan untuk komunikasi jarak dekat, seperti pada remote TV. Gelombang inframerah itu mudah untuk dibuat, harganya relatif murah, tidak dapat menembus tembok atau benda gelap, serta memiliki fluktuasi daya tinggi dan dapat diinterfensi oleh cahaya matahari.
  • Sebagai alat komunikasi pengontrol jarak jauh. Inframerah dapat bekerja dengan jarak yang tidak terlalu jauh (kurang lebih 10 meter dan tidak ada penghalang)
  • Sebagai salah satu standardisasi komunikasi tanpa kabel. Jadi, inframerah dapat dikatakan sebagai salah satu konektivitas yang berupa perangkat nirkabel yang digunakan untuk mengubungkan atau transfer data dari suatu perangkat ke parangkat lain. Penggunaan inframerah yang seperti ini dapat kita lihat pada telepon genggam dan laptop yang memiliki aplikasi inframerah. Ketika kita ingin mengirim berkas ke telepon genggam, maka bagian infra harus dihadapkan dengan modul inframerah pada PC. Selama proses pengiriman berlangsung, tidak boleh ada benda lain yang menghalangi. Fungsi inframerah pada telepon genggam dan laptop dijalankan melalui teknologi IrDA (Infra red Data Acquition). IrDA dibentuk dengan tujuan untuk mengembangkan sistem komunikasi via inframerah.

INDUSTRI
  • Lampu inframerah. Merupakan lampu pijar yang kawat pijarnya bersuhu di atas ±2500°K. hal ini menyebabkan sinar inframerah yang dipancarkannya menjadi lebih banyak daripada lampu pijar biasa. Lampu infra merah ini biasanya digunakan untuk melakukan proses pemanasan di bidang industri.
  • Pemanasan inframerah. Merupakan suatu kondisi ketika energi inframerah menyerang sebuah objek dengan kekuatan energi elektromagnetik yang dipancarkan di atas -273 °C (0°K dalam suhu mutlak). Pemanasan inframerah banyak digunakan pada alat-alat seperti, pemanggang dan bola lampu (90% panas – 10% cahaya).

EFEK RUMAH KACA

Edit Posted by with No comments
APA SIH EFEK DARI RUMAH KACA ?
YUK DIBACAA...


Efek rumah kaca, yang pertama kali diusulkan oleh Joseph Fourier pada 1824, merupakan proses pemanasan permukaan suatu benda langit (terutama planet atau satelit) yang disebabkan oleh komposisi dan keadaan atmosfernya.
MarsVenus, dan benda langit beratmosfer lainnya (seperti satelit alami SaturnusTitan) memiliki efek rumah kaca, tapi artikel ini hanya membahas pengaruh di Bumi. Efek rumah kaca untuk masing-masing benda langit tadi akan dibahas di masing-masing artikel.
Efek rumah kaca dapat digunakan untuk menunjuk dua hal berbeda: efek rumah kaca alami yang terjadi secara alami di bumi, dan efek rumah kaca ditingkatkan yang terjadi akibat aktivitas manusia (lihat juga pemanasan global). Yang belakang diterima oleh semua; yang pertama diterima kebanyakan oleh ilmuwan, meskipun ada beberapa perbedaan pendapat.
APA SIH PENYEBABNYA?
Efek rumah kaca disebabkan karena naiknya konsentrasi gas karbon dioksida (CO2) dan gas-gas lainnya di atmosfer. Kenaikan konsentrasi gas CO2 ini disebabkan oleh kenaikan pembakaran bahan bakar minyakbatu bara dan bahan bakar organik lainnya yang melampaui kemampuan tumbuhan-tumbuhan dan laut untuk menyerapnya.
Energi yang masuk ke Bumi:

  • 25% dipantulkan oleh awan atau partikel lain di atmosfer
  • 25% diserap awan
  • 45% diserap permukaan bumi
  • 5% dipantulkan kembali oleh permukaan bumi

Energi yang diserap dipantulkan kembali dalam bentuk radiasi inframerah oleh awan dan permukaan bumi. Namun sebagian besar inframerah yang dipancarkan bumi tertahan oleh awan dan gas CO2 dan gas lainnya, untuk dikembalikan ke permukaan bumi. Dalam keadaan normal, efek rumah kaca diperlukan, dengan adanya efek rumah kaca perbedaan suhu antara siang dan malam di bumi tidak terlalu jauh berbeda.
Selain gas CO2, yang dapat menimbulkan efek rumah kaca adalah belerang dioksida, nitrogen monoksida (NO) dan nitrogen dioksida (NO2) serta beberapa senyawa organik seperti gas metana dan klorofluorokarbon (CFC). Gas-gas tersebut memegang peranan penting dalam meningkatkan efek rumah kaca.
APA SIH AKIBAT NYA ?
Meningkatnya suhu permukaan bumi akan mengakibatkan adanya perubahan iklim yang sangat ekstrem di bumi. Hal ini dapat mengakibatkan terganggunya hutan dan ekosistemlainnya, sehingga mengurangi kemampuannya untuk menyerap karbon dioksida di atmosfer. Pemanasan global mengakibatkan mencairnya gunung-gunung es di daerah kutub yang dapat menimbulkan naiknya permukaan air laut. Efek rumah kaca juga akan mengakibatkan meningkatnya suhu air laut sehingga air laut mengembang dan terjadi kenaikan permukaan laut yang mengakibatkan negara kepulauan akan mendapatkan pengaruh yang sangat besar.
Menurut perhitungan simulasi, efek rumah kaca telah meningkatkan suhu rata-rata bumi 1-5 °C. Bila kecenderungan peningkatan gas rumah kaca tetap seperti sekarang akan menyebabkan peningkatan pemanasan global antara 1,5-4,5 °C sekitar tahun 2030. Dengan meningkatnya konsentrasi gas CO2 di atmosfer, maka akan semakin banyak gelombang panas yang dipantulkan dari permukaan bumi diserap atmosfer. Hal ini akan mengakibatkan suhu permukaan bumi menjadi meningkat.

PERSAMAAN DIFERENSIAL

Edit Posted by with No comments
PERSAMAAN DIFERENSIAL BIASA ^^
Persamaan diferensial biasa adalah persamaan diferensial di mana fungsi yang tidak diketahui (variabel terikat) adalah fungsi dari variabel bebas tunggal. Dalam bentuk paling sederhana fungsi yang tidak diketahui ini adalah fungsi riil atau fungsi kompleks, namun secara umum bisa juga berupa fungsi vektor maupun matriks. Lebih jauh lagi, persamaan diferensial biasa digolongkan berdasarkan orde tertinggi dari turunan terhadap variabel terikat yang muncul dalam persamaan tersebut.
Contoh sederhana adalah hukum gerak kedua Newton, yang menghasilkan persamaan diferensial
m \frac{d^2 x(t)}{dt^2} = F(x(t)),\,
untuk gerakan partikel dengan massa konstan m. Pada umumnya, gaya F tergantung kepada posisi partikel x(t) pada waktu t, dan demikian fungsi yang tidak diketahui x(t) muncul pada kedua ruas persamaan diferensial, seperti yang diindikasikan dalam notasiF(x(t)).
Persamaan diferensial biasa dibedakan dengan persamaan diferensial parsial, yang melibatkan turunan parsial dari beberapa variabel.
Persamaan diferensial biasa muncul dalam berbagai keadaan, termasuk geometrimekanikaastronomi dan pemodelan populasi. Banyak matematikawan ternama telah mempelajari persamaan diferensial dan memberi sumbangan terhadap bidang studi ini, termasuk Isaac NewtonGottfried Leibniz, keluarga Bernoulli, RiccatiClairautd'Alembertdan Euler.
Dalam kasus persamaan tersebut linier, persamaan diferensial biasa dapat dipecahkan dengan metode analitik. Malangnya, kebanyakan persamaan diferensial nonlinier, dan kecuali sebagian kecil, tidak dapat dipecahkan secara eksak. Pemecahan hampiran dapat dicapai menggunakan komputer.